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Abstract

This paper estimates a joint econometric model of consumption growth

and long-term real interest rates with stochastic volatility based on

data from the U.K. The model imposes no-arbitrage condition on the

term structure of real interest rates and extends the standard long-run

risk model which assumes constant market prices of risk. We find that

both the long-run consumption risk and the volatility risk are priced

in long-term real bond yields. The long-run consumption risk dom-

inates the volatility risk and drives most of the movements of bond

risk premiums. In contrast to the standard long-run risk model, we

find that a counter-cyclical time-varying market price of risk, not the

stochastic volatility, is the primary source of time-variations in bond

risk premiums, accounting for more than 70% of the variance of the

risk premium on the 10-year real bond.
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1 Introduction

Economic theories suggest a close relation between real interest rates and

consumption through the elasticity of intertemporal substitution. The ex-

pected consumption growth is a key state variable determining real interest

rates.1 Even though the standard consumption-based asset pricing model

is often rejected by financial market data, recent studies that feature more

general specifications of investor’s preferences such as those with recursive

utility or habit persistence, however, have documented more supporting ev-

idence for consumption risks to explain major financial market phenom-

ena. Among studies that focus on the term structure of interest rates, both

Wachter (2006) and Buraschi and Jiltsov (2007) find that a consumption-

based model with the habit utility of Campbell and Cochrance (1999) can

account for many features of the nominal term structure of interest rates. Pi-

azzesi and Schneider (2006) uses a representative agent asset pricing model

with recursive utility preferences of Epstein and Zin (1989) and Weil (1989)

to examine the roles of inflation and long-run consumption growth in deter-

mining risk premiums on the U.S. Treasury bonds. Using the same recur-

sive utility preferences, Gallmeyer et al. (2007) derives the equilibrium yield

curve that conforms with the standard affine term structure model and is

able to relate factor loadings and market prices of risk to deep structural

parameters.

The state variables in these models include not only consumption growth,

but also a latent variable that represents either an exogenous consumption

habit or the expected long-run consumption growth. In particular, in the

long-run risk model of Bansal and Yaron (2004) and Bansal (2007), con-

sumption growth includes a small but persistent long-run component. Fluc-

tuations of this long-run component, together with stochastic volatilities

of consumption growth, drive financial markets as recursive utility prefer-

ences generate heightened concerns about long-run growth prospects of the

1Some early empirical studies that investigate the relation between real interest rates
and consumption growth include Hall (1988), Harvey (1988) and Chapman (1997) among
many others.
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economy and the time-varying levels of economic uncertainty. A recent ap-

plication of the long-run risk model is Bansal and Shaliastovich (2013) which

shows that the model goes a long way to account for many stylized facts in

bond and foreign exchange markets.

Motivated by these results, the current paper estimates a joint econo-

metric model of consumption growth and long-term real interest rates based

on data from the U.K. The model imposes no-arbitrage condition on the

term structure of real interest rates and hence nests the standard long-

run risk model. We seek to find direct empirical evidence of the aggregate

consumption growth as a major risk factor driving the real bond market

and to understand more precisely the roles of expected consumption growth

and growth volatility in determining the long-end of the real yield curve.

Long-term interest rates encode information about investor’s intertemporal

marginal rate of substitution. And focusing on real interest rates allows us

to concentrate on consumption growth while abstracting from the effect of

inflation.2 Unlike the tightly specified equilibrium asset pricing models, this

paper doesn’t attempt to identify and estimate the structural parameters

that characterize investor’s preferences. Using the no-arbitrage condition,

the model adopts a more flexible specification of market prices of risk. It

lies within the broad class of dynamic affine models of the term structure

of interest rates.3 Retaining such econometric flexibilities is important if we

are to decode information from asset prices about long-run economic growth

prospects as well as the required risk compensations.

The paper contributes to a growing literature on the estimation of long-

run risk models, including Bansal, Gallant and Tauchen (2007), Chen, Fav-

ilukis and Ludvigson (2013) and Schorflheide et al. (2013) among others.

These studies focus on stock market returns instead of the term structure

2As shown in Gallmeyer et al. (2007), the empirical properties of equilibrium models
of the nominal term structure of interest rates depends critically on the econometric as-
sumptions about inflation. In the case of stock marker returns, additional assumptions
about the dividend process are needed.

3See Duffie and Kan (1996) and Dai and Singleton (2000) for the standard affine models.
Their extensions can be found in Duffie (2002), Duarte (2003) and Cheridito, Filipovic
and Kimmel (2007) among others.
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of interest rates. Doh (2013) uses Bayesian methods to estimate a Gaus-

sian model of the nominal term structure under the long-run risk while

assuming a constant growth volatility. Bansal, Kiku and Yaron (2012) and

Beeler and Campbell (2012) provide calibration-based evaluations of the

long-run risk model. In all these studies, the stochastic discount factor for

asset pricing is derived from Epstein-Zin recursive utility preferences. The

log-linearized Euler equation leads to constant market prices of risk. Risk

premiums are time-varying solely because of stochastic volatilities of con-

sumption growth. As pointed out by Beeler and Campbell (2012), while the

model is able to account for many stylized facts of asset returns, the model

also implies a downward-sloping real yield curve. A quick inspection of the

data from inflation-indexed bond yield from the U.K., however, indicates

that the real yield curve is in fact upward-sloping for most parts of the sam-

ple period between 1985 and 2011 (see Figure 6 below). The average yield

spread between a 15-year real bond and a 5-year real bond is about 30 basis

points. Moreover, the yield spread varies greatly over time, suggesting pos-

sible time-variations in bond risk premiums.4 Using a flexible specification

of the market price of risk, our model is able to match the upward-sloping

yield curve. More importantly, we find that the time-varying market price

of risk, not the stochastic volatility, is the primary source of time-variations

in bond risk premiums. In contrast, a standard long-run risk model would

attribute all the time-variations in bond risk premiums to changes levels of

growth uncertainty.

The rest of the paper is organized as follows. Section 2 provides sum-

mary statistics about consumption growth and long-term real interest rates.

Section 3 presents the arbitrage-free dynamic model of the real yield curve

under the long-run consumption risk. The estimation and empirical results

are discussed in section 4. Section 5 contains some concluding remarks.

4A another factor that determines the yield spread is the expected future short rate.
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2 Data nd Summary Statistics

We study the joint dynamics of aggregate consumption growth and long-

term real interest rates. Ex-ante real interest rates are not observable. The

best approximations are yields on inflation index-linked government bonds.

The U.K. market for inflation index-linked government debts was started

in 1981 and has the longest time series on such yields. Yields on Treasury

Inflation Protected Securities (TIPS) in the U.S. also provide close approxi-

mations to real interest rates. But the U.S. market was started in the 1990s

and has much shorter time series. Since the data on aggregate consumption

are available on a quarterly basis, we use the U.K. data on real interest rates

and consumption in this paper.5 Consumption data are obtained from Inter-

national Financial Statistics (IFS). Consumption growth rates are calculated

as quarterly percentage changes of seasonally adjusted per-capita real con-

sumption on non-durable goods and services. Data on real interest rates are

obtained from Bank of England which also provides detailed explanations of

the estimation of zero-coupon yields from bond prices. We only use the long

end of the real yield curve (5-year to 15-year) in this study. One reason is

that the U.K. index-linked bonds have their coupon and principal payments

effectively linked to the Retail Price Index published approximately eight

months prior to the payment date. While this “indexation lag problem”

may create serious errors in the estimates of short-term real interest rates,

its effect on the long end of the yield curve should be negligible. We use

data from the first quarter of 1985 to the end of 2011. Interest rates are

collected at the beginning of each quarter. We exclude the data from 1981

to 1984 mainly because the market for index-linked bonds was known to be

not very liquid in the early years of its development, and the bond yields

might include a significant liquidity premium.

In Table 1 we report the summary statistics on consumption growth and

the long-term real interest rates. Between 1985 and 2011, aggregate con-

5Other studies of the real term structure that also utilize the U.K. index-linked bond
yields include Evans (1998, 2003) and Seppälä (2005) among others.
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sumption grows at an annual rate of about 1.87%. Compared to long-term

real interest rates, consumption growth is much more volatile with a stan-

dard deviation of 3.2%. The standard deviations of long-term interest rates

are all smaller than 1%. During the sample period, consumption growth is

positively correlated with an autocorrelation coefficient of 0.1589. In con-

trast, interest rates are very persistent. The autocorrelation coefficients for

the long-term real interest rates range from 0.78 to 0.89. The real yield

curve has a positive slope on average during 1985-2011. The mean of the

5-year rate is 3.08%, while the mean of the 15-year rate is 3.38%. This

fact posts a challenge for the standard long-run risk model which implies a

downward-sloping real yield curve.6

One often observed feature of the term structure of interest rates is that

interest rate volatility doesn’t seem to attenuate as maturity increases. This

is also true about the long-term real interest rates. As we can see from Table

1, as interest rate maturity increases from 5 years to 15 years, the standard

deviation only declines slightly from 0.65% to 0.60%. Our term structure

model is able to capture these empirical properties of the real yield curve.

The close relation between real interest rates and consumption growth

can be seen from Table 2, where we report the cross correlations between

the long-term real interest rates and the consumption growth rate. The

table clearly shows that, consistent with economic theories, real interest

rates are strongly and positively correlated with consumption growth. In

particular, the real interest rates in our sample are most correlated with

1-year or 2-year ahead consumption growth (∆ct+4 or ∆ct+8). For example,

the correlation between the 5-year real interest rate, R5,t, with ∆ct+8 is

0.34. The correlation between the real interest rates and lagged consumption

growth is much weaker. The highest correlation is between R5,t and ∆ct−4 at

6Some earlier studies such as Piazzesi and Schneider (2006) have reported a downward-
sloping real yield curve for the U.K. indexed bonds between 1995 and 2006 based on
monthly data. We also find that the yield curve is downward-sloping for the same sample
period using quarterly data. But for the whole sample period and for most of the sub-
sample periods, the yield curve slope is positive. See Figure 6 and discussions in Section
4.
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about 0.23. These results suggest that, if consumption growth is predictable,

the state variables that predict future consumption growth are likely to play

an important role in determining real interest rates as well.

To see that long-term real interest rates indeed predict consumption

growth, we regress future consumption growth on lagged 5-year real interest

rate and lagged consumption growth. The results are reported in Table 3.

We can see that the real interest rate has significant forecasting power for

consumption growth in the next quarter, ∆ct+1 = log ct+1− log ct, while the

lagged consumption growth does not. We also regress long-run consumption

growth on the lagged interest rate and consumption growth. A 4-quarter or

8-quarter moving average of the quarterly growth rate is used to measure

long-run consumption growth. We find that both the 5-year rate and lagged

consumption growth have significant forecasting powers for future long-run

consumption growth. The R-square from the forecasting regression is around

20% and 37% respectively, and a higher level of real interest rates predicts

higher future consumption growth. Early empirical studies on the predictive

power of the yield curve for future economic activities have focused almost

exclusively on the slope of the yield curve. Our result is consistent with that

of Ang and Piazzesi (2006) which shows that the level of interest rates may

have more predicative power for GDP growth than any yield spread does.

3 A Consumption-Based Term Structure Model

Motivated by the empirical results above, in this section, we construct a

simple consumption-based asset pricing model of the terms structure of real

interest rates. The model allows us to study the joint dynamics of consump-

tion growth and the long-end of the real yield curve while respecting the

no-arbitrage condition on the cross-section of the real interest rates.
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3.1 State variables

We assume that the relevant state variables for the pricing of long-term real

bonds are the expected consumption growth and the stochastic consumption

growth volatility. In particular, we postulate that

∆ct+1 = µ0 + µt +
√
zt εt+1 (1)

where µt represents a small and potentially very persistent predictable com-

ponent of (demeaned) consumption growth, the conditional variance of con-

sumption growth is driven by a positive and also potentially very persistent

state variable zt, and εt+1 is an i.i.d. N (0, 1) shock to consumption growth.

In this paper we are primarily interested in the impact of the expected con-

sumption growth, µt, and the growth volatility, zt, on the long-end of the

real yield curve.

We assume

µt+1 = φµt + σµνt+1 (2)

where |φ| < 1, σµ > 0, νt+1 is also i.i.d. N (0, 1) shock to the expected

consumption growth. Following the standard long-run risk model such as

that in Bansal and Yaron (2004) and Bansal, Kiku and Yaron, 2012), we

assume εt+1 and νt+1 are mutually independent. One key difference is that

we assume that µt+1 has constant volatility for simplicity. Allowing the

state variable zt to also drive the volatility of µt+1 as in Bansal and Yaron

(2004) and Bansal, Kiku and Yaron (2012) will change the factor loadings in

a term structure model. This would be useful if we are interested in estimat-

ing deep structural parameters of an utility function. Since we will estimate

a reduced form model based on no-arbitrage condition, the homoscedasticity

assumption has little impact on the empirical performance of our model.7

A more interesting case is that in Drechsler and Yaron (2011), Schorflheide,

Song and Yaron (2013) and others where a separate state variable drives

7Since the other state variable zt+1 has stochastic volatility as explained below, so is
our term structure model.
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the stochastic volatility of the expected consumption growth. This will in-

troduce a third factor to the term structure model. However, as we will see

below, a model with just two factors (the expected consumption growth and

consumption growth volatility) is able to explain almost all of the dynamics

of the long-end of the real yield curve.8

The state variable, zt, drives the stochastic volatility of consumption

growth. Since it needs to be positive, we assume that zt follows an autore-

gressive gamma process as in Gourieroux and Jasiak (2006) and Dai, Le and

Singleton (2010).9 That is, conditional on zt,

zt+1

ψ
∼ gamma(δ +P) (3)

where

P ∼ Poisson

(

ρzt

ψ

)

for some positive parameters δ > 0, 0 < ρ < 1 and ψ > 0. We also assume

that zt+1 is conditionally independent of µt+1 and ∆ct+1. To prevent zt from

attaining the zero lower bound, we further restrict δ > 1 in the empirical

estimation below.10 Note that the conditional mean and variance of zt+1

are given by

Et(zt+1) = ψδ + ρzt (4)

Vart(zt+1) = ψ2δ + 2ψρzt (5)

As a result, our dynamic term structure model of real interest rates also

8Schorflheide, Song and Yaron (2013) shows that the volatility of the expected con-
sumption growth accounts for very little of the variations in the real short rate.

9The conditional density of zt+1 given zt takes the following form f(zt+1|zt) =

exp(−
zt+1

c
)
∑

∞

k=0

[

1
c
(
zt+1

c
)δ+k−1 1

Γ(δ+k)
exp(−ρzt/c)(ρzt/c)

k

k!

]

. In continuous-time limit, zt

converges to the square-root process dz(t) = k(θ − z(t))dt + σ
√

z(t) dB(t) where k∆t =
1 − ρ, 1

2
σ2∆t = c and 2kθ

σ2 = δ. See Gourieroux and Jasiak (2006) for more detailed
discussions of the properties of zt. Dai, Le and Singleton (2010) provides a multivariate
extension of the autoregressive gamma process.

10See Cheridito, Filipovic and Kimmel (2007) and Dai, Le and Singleton (2010) for more
discussions on this issue.
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features stochastic volatility.

3.2 The stochastic discount factor

Instead of making explicit assumptions about investor’s intertemporal utility

function as in equilibrium asset pricing models, we derive the term struc-

ture of interest rates using the no-arbitrage approach in this paper.11 The

less stringent condition of no-arbitrage implies that there exists a positive

stochastic discount factor, Mt,t+1, such that for an asset with a payoff Dt+1

at t+ 1, its time-t price is given by

Pt = Et(Mt,t+1Dt+1) (6)

Let Xt = (zt, µt)
′. Following Dai, Le and Singleton (2010), we postulate

a general specification for the stochastic discount factor as follows,

Mt,t+1 = e−rt
e−λ

′

tXt+1

LPt (λt)
(7)

where rt is the one-period risk-free rate, λt = (λz,t, λµ,t)
′, a 2 × 1 vector

of market prices of risk, and LPt (λt) is the conditional (two-sided) Laplace

transforms of Xt+1. Because of the conditional independence between zt+1

and µt+1, L
P
t (λt) can be obtained as, for any k = (kz, kµ)

′,

LPt (k) = Et

(

e−k
′Xt+1

)

= e−a(kz)−b(kz)zt × e−kµ µ̄
P
t + 1

2
k2µ σ

2
µ (8)

where µ̄Pt = φµt is the conditional mean of µt+1 under the physical proba-

bility measure P, and a(kz) and b(kz) in (8) are two nonlinear functions of

kz given by

a(kz) = δ log(1 + kzψ), b(kz) =
kzρ

1 + kzψ

The appendix shows that the specification of the stochastic discount factor

11The appendix explains the connection between our model and an equilibrium model
with Epstein-Zin recursive preferences.
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above is closely related to the inter-temporal marginal rate of substitution

(IMRS) in the long-run risk models such as Bansal and Yaron (2004) and

Bansal, Kiku and Yaron (2012). The key difference, however, is that while

the market prices of risk are constant in the long-run risk models, they can

be flexible functions of the state variables in our model.

3.3 Risk neutral probability measure and market prices of

risk

The solution to the real yield curve can be obtained by a change of probabil-

ity measure. We define the risk-neutral probability measure by the following

Radon-Nykody derivative

ξt,t+1 =

(

dQ

dP

)

t,t+1

=
e−λ

′

tXt+1

LPt (λt)
(9)

It then follows that the conditional Laplace transforms of Xt+1 under

the risk-neutral probability measure Q is given by

L
Q
t (k) =

LPt (k + λt)

LPt (λt)
= e−a

∗

t (kz)−b
∗

t (kz)zt × e−kµ µ̄
Q
t + 1

2
k2µ σ

2
µ (10)

where

ψ∗

t =
ψ

1 + λz,t ψ
, ρ∗t =

ρ

(1 + λz,t ψ)2

and

a∗t (kz) = δ log(1 + kzψ
∗

t ) b∗t (kz) =
kzρ

∗

t

1 + kzψ
∗

t

µ̄
Q
t is the conditional mean of µt+1 under the risk-neutral probability mea-

sures Q and is given by

µ̄
Q
t = µ̄Pt − σ2µλµ,t (11)

We now make two assumptions about the market prices of risk in order

to get an analytical solution of the term structure of real interest rates.
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First, we assume that λz,t is constant,

λz,t = λz (12)

In this case, we have

L
Q
t (k) = e−a

∗(kz)−b∗(kz)zt × e−kµ µ̄
Q
t + 1

2
k2µ σ

2
µ (13)

where

a∗(kz) = δ log(1 + kzψ
∗) b∗(kz) =

kzρ
∗

1 + kzψ∗
(14)

ψ∗ =
ψ

1 + λz ψ
, ρ∗ =

ρ

(1 + λz ψ)2
(15)

In other words, zt still follows an autoregressive gamma process that is

conditionally independent of µt under Q.

Secondly, we assume µt+1 is also AR(1) under Q with its conditional

mean given by

µ̄
Q
t = φ∗0 + φ∗1µt (16)

This is equivalent to assume that

σ2µλµ,t = −φ∗0 − (φ∗1 − φ1)µt (17)

As shown in the appendix, the standard long-run risk model assumes

λµ,t is constant and therefore restrict φ1 = φ∗1. In our case, however, φ1 and

φ∗1 are not necessarily the same and are determined by the interest rate and

consumption data. In addition to stochastic growth volatility, this time-

varying market price of risk introduces a new source of time-varying risk

premiums.
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3.4 An affine model of the real yield curve

Now we consider the market for zero-coupon bonds that are free of default

risk. Let Pn,t denote the real price at time t of a n-period bond that pays

one unit of consumption goods when it matures. In the absence of arbitrage

opportunities, we must have

Pn,t = EPt (Mt,t+1Pn−1,t+1) = e−rtE
Q
t (Pn−1,t+1) (18)

where the first expectation EPt (·) is taken with respect to the physical prob-

ability measure P and the second expectation EQt (·) is taken with respect to

the risk-neutral probability measure Q.

The model is completed by assuming that the short-term interest rate,

rt, is given by

rt = A1 +B1µt + C1zt (19)

and Pn,t can be obtained as

Pn,t = e−An−Bnµt−Cczt (20)

where the coefficient An and Bn are determined by the following system of

difference equations, starting from A0 = B0 = C0 = 0,

An = A1 +An−1 + a∗(Cn−1) + φ∗0Bn−1 −
1

2
B2
n−1σ

2
µ (21)

Bn = B1 + φ∗1Bn−1 (22)

Cn = C1 + b∗(Cn−1) (23)

where

a∗(Cn−1) = δ log(1 + ψ∗Cn−1)

b∗(Cn−1) =
ρ∗Cn−1

1 + ψ∗Cn−1
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Continuously compounding n-period interest rate, Rn,t, is defined by

Pn,t = e−nRn,t

and we have

Rn,t =
An

n
+
Bnµt

n
+
Cnzt

n
(24)

4 Estimation and Empirical Results

We estimate the joint dynamics of consumption growth and long-term real

interest rates based on the term structure model developed above. As

discussed in Section 2, the data on consumption are quarterly percentage

changes of seasonally adjusted per-capita real consumption of non-durable

goods and services in U.K. from 1985 to 2011. We use yields on 5-year, 10-

year and 15-year inflation index-linked zero-coupon bonds as ex-ante real

interest rates. We assume that 5-year and 10-year bonds are priced with-

out error. We can, therefore, solve for (zt, µt)
′ using the 5-year and 10-year

rates, (R5,t, R10,t)
′. We assume that the 15-year bond is priced with an error

that has a normal distribution N (0, σ215).

These assumptions together with those on the distribution of state vari-

ables ∆ct, µt and zt (under probability measure P) in Section 3.1 enable us

to write down the joint likelihood function for {∆ct, R5,t, R10,t, R15,t} where

Rn,t denotes n-year real interest rate. The parameters to be estimated in

this models include: (1) parameters that govern the P-distribution of the

state variables {δ, ρ, ψ, µ0, φ, σµ}; (2) parameters that determine the market

prices of risk or the Q-distribution of the state variables {λz, φ∗0, φ∗1}; (3)

parameters that determine the short-term interest rate {A1, B1, C1}; and

(4) standard deviations of the pricing errors for 15-year, {σ15}.

Given the affine structure of the term structure model, it is well known

that the model is invariant with respect to certain linear transforms and

it is necessary to normalize some parameters to achieve identification. In
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our case, identification can be achieved by simply setting C1 = 1. We are

then left with a total of 12 parameters that can be estimated by maximum

likelihood method. The results are reported in Table (4).

4.1 Goodness-of-fit

In the upper panel of Figure 1, we plot the sample mean of the actual index-

linked zero yields (maturity from 5 years to 15 years, represented by circles)

between 1985 and 2011. We can see again that the long end of the real yield

curve slopes slightly upwards, with the 5-year rate at around 3.08% and the

15-year rate at around 3.38%. In the same graph, we also plot the means of

the real interest rates, represented by the solid line, from the estimated term

structure model. The model provides a very good fit of the average yield

curve with small pricing errors. For example, for the 7-year, 10-year and

12-year yields, the root mean square pricing errors are 0.0643%, 0.0580%

and 0.0379% per annum respectively.12 The lower panel of Figure 1 plots

the sample standard deviations of the actual index-linked zero yields as well

as the standard deviations of the real rates from the estimated model. We

can see that the model also provides a good fit to the cross-section of the

second moments of the real interest rates.

Most arbitrage-free term structure models with macroeconomic funda-

mentals assume Gaussian distributions with constant volatility. We find that

allowing for stochastic volatility of consumption growth greatly improves the

goodness-of-fit of the term structure model. Figure 2 plots the sample mean

and sample standard deviations of the actual index-linked zero yields to-

gether with the mean yield curve and standard deviations of long-term real

rates from an estimated term structure model. The terms structure model

is same as the one in Section 3 except that it assumes homoskedasticity in

consumption growth. Compared to the model with stochastic volatilities

12Root mean square pricing errors are computed as
√

∑T
t=1(Rn,t − R̂n,t)2/T , where

Rn,t is the observed n-year index-link zero yield at time t, R̂n,t is the fitted n-year real
interest rate from the term structure model.
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in consumption growth, we can see that the constant-volatility model does

a poor job in matching the average yield curve and especially the second

moments of the interest rates. The model substantially underestimates the

volatility of long-term real interest rates. A formal likelihood ratio test also

strongly favors the model with stochastic volatility.

The estimated term structure model in Section 3 allows us to extract

time-varying levels of consumption growth volatility as well as the expected

consumption growth from inflation-indexed zero yields. Figure 3 plots the

estimated state variable ẑt for the sample period of Q1.1985 - Q4.2011. zt

drives the conditional variance of the consumption growth rate. Large vari-

ations in ẑt indicate that the conditional variance of ∆ct+1 changes signifi-

cantly over time. The correlation coefficient between consumption growth,

∆ct, and its volatility, ẑt, is around 0.10, suggesting that high volatility states

tend to coincide with those where consumption is high. The time-varying

growth volatility is also very persistent. The autocorrelation coefficient for

ẑt is about 0.80.

In Figure 4, we plot the expected consumption growth estimated from

our model, µ̂t, together with the quarterly consumption growth rate, ∆ct,

for the period of Q1.1985 - Q4.2011. We have subtracted mean growth rate

from ∆ct in the graph. Mean consumption growth rate during this period

is about 1.87% per year. Compared with ∆ct, the expected consumption

growth is smaller but much more persistent. While ∆ct has an autocorre-

lation coefficient of 0.16, µ̂t exhibits strong positive autocorrelation with a

coefficient of 0.91. µ̂t has a standard deviation of 2.2% per annum compared

to 3.2% for consumption growth. To see how well µ̂t captures variations in

the expected consumption growth, we compute a 2-year moving average of

consumption growth as ∆ct =
∑4

i=−3 ∆ct+i. The correlation between µ̂t

and ∆ct is 7.9% for the whole sample and 32% if we exclude the 2008-2009

period.

Arbitrage-free term structure models with latent factors usually use the

descriptive properties of the yield curve to characterize the state variables,
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such as the level, slope and curvature factors. However, in the current

paper, the state variables, Xt = (zt, µt), have clear economic interpretations

in terms of consumption growth. To see how are these consumption-based

factors related to yield-curve factors, we regress, respectively, µ̂t and ẑt on

the 5-year rate and the spread between the 15-year rate and the 5-year rate.

The results are included in Table 5. We can clearly see that the growth

volatility, ẑt, is closely related to the yield spread, and a higher volatility

will tend to be associated with a flatten or even invert the yield curve. On

the other hand, the expected consumption growth, µ̂t, is closely related to

the level of interest rates. Consistent with economic theories, the coefficient

on Y5,t is positive and significant. Moreover, since the yield spread contains

information about future interest rates, a positive and significant coefficient

on Y15,t − Y5,t implies that µ̂t is also related to the level of future interest

rate.

4.2 Bond risk premiums

Our model allows us to easily decompose bond risk premiums into different

components. Consider an (n+ 1)-period bond at time t. Its risk premium,

or the expected excess rate of return between t and t+1 can be obtained as

rpn,t = (EPt − E
Q
t ) lnPn,t+1 (25)

where Pn,t+1 is the bond price at t + 1, EPt represents the conditional ex-

pectation under the physical probability measure, P, and E
Q
t represents

the conditional expectation under the risk-neutral probability measure, Q,

defined in (9) above.

Using the model in Section 3, we can easily get

rpn,t = −Bn × [−φ∗ + (φ− φ∗1)µt]− Cn × [(ψ − ψ∗)δ + (ρ− ρ∗)zt] (26)

The first part on the right-hand side of (26) represents the part of the
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bond risk premium due to time-varying expected consumption growth or

the long-run consumption risk, µt, and the second term represents the risk

premium attributable to time-varying growth volatility, zt. These risk pre-

miums can also be expressed as the negative of the conditional co-variance

between the log bond price, lnPn,t+1 and the log stochastic discount factor

(or intertemporal marginal rate of substitution), lnMt,t+1 defined in (7),

under, respectively, shocks to the expected growth µt+1 and shocks to the

growth volatility zt+1, or
13

rpn,t ≈ −Covµt (logPn,t+1, logMt,t+1)−Covzt (log Pn,t+1, logMt,t+1) (27)

When the covariance is negative (positive), the risk premium is positive

(negative). This is because a negative covariance implies lower asset returns

in states where the marginal utility is high, making it very risky to hold that

asset. On the other hand, a positive covariance implies higher asset returns

in states where the marginal utility is high, making the asset a hedge against

the risk factor.

These risk premiums for the 10-year real bond based on the estimated the

term structure model are plotted in Figure 5, and their summary statistics

are reported in Table 6. We find that both the long-run consumption risk

and the volatility risk are priced in the long-term index-linked bond yields

and exhibit strong time variations. The long-run consumption risk is in fact

the primary source of the bond risk premium and dominates the volatility

risk. The average bond risk premium (annualized) between 1985 and 2011

is around 0.925%, among which 1.275% is the long-run risk premium and

-0.350% is the volatility risk premium. The standard deviations of the total

bond risk premium, long-run risk premium and volatility risk premium are

0.267%, 0.197% and 0.092% respectively. Since, by construction, the total

risk premium is the sum of the long-run risk premium and the volatility

risk premium, the OLS regression coefficient of the long-run risk premium

(or the volatility risk premium) on the total risk premium provide a good

13It is an approximation result because zt is not Gaussian.
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“variance decomposition” of the bond risk premium. As Table 6 shows, the

long-run risk accounts more than 70% of the variations of the bond risk

premium.

It is interesting to note that the risk premium for the growth volatility is

negative throughout the sample period, indicating that long-term real bonds

provide an effective hedge against the volatility risk in consumption growth.

Moreover, since the estimated market price of the volatility risk is positive,

λ̂z > 0, it then follows that ρ − ρ∗ > 0 (see Equation (15)), and hence the

risk premium in (26) decreases as the volatility increases (note that Cn > 0).

When growth uncertainty increases, investors are more willing to hold long-

term real bonds which promise constant future consumption. This result is

consistent with the finding in Bansal and Shaliastovich (2013).

Although both the long-run risk premium and the volatility risk premium

are time-varying as Figure 5 shows, the sources of their time-variations are

completely different. The risk premium in (27) can be alternatively written

as

rpn,t = −Bnσ2µλµ,t − Cnσ
2
z,tλz (28)

In the equation above, σ2µ is the conditional variance of µt+1 which is con-

stant in our model, σ2z,t is the conditional variance of zt+1 which is equal

to ψ2δ + 2ψρzt as in (5), λz is the market price of the volatility risk and

is constant, λµ,t is the market price of long-run consumption risk which is

given in (17).

The volatility risk premium varies over time because the risk, i.e. the

variance of the growth volatility, σ2z,t, changes over time while the market

price of risk, λz, stays constant. In contrast, the long-run risk premium

changes over time because the market price of risk, λµ,t changes over time

while the risk, i.e. the variance of the expected consumption growth σ2µ, re-

mains constant.14 Our estimation shows that the time-varying market price

of risk, not the time-varying risk, is the primary source of time-variations in

14Even if we allow zt to drive the variance of µt, we still get the same decomposition
where one part of rpn,t is driven by λµ,t and the other part is driven by zt.
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the bond risk premium.

Using the estimated parameters we can easily obtain from (17),

σ2µ λµ,t = −0.0002 − 0.0061µt (29)

where µt is the expected consumption growth. The negative coefficient on µt

implies a counter-cyclical market price of risk. Note that the risk premium,

or the expected excess rate of return, on the long-term real bond is pro-

cyclical because of −Bn term in (28). Investors require a higher (lower) ex-

cess rate of return on default-free long-term real bonds in good (bad) times.

In contrast, the standard long-run risk models assume that the market price

of risk is constant, and that risk premiums are time-varying only because

the growth risk, as measured by the volatility of (expected) consumption

growth, changes over time. One limitation of this restriction is that risk

premiums will be perfectly correlated with the consumption growth volatil-

ity, and therefore the model may not be able to fully capture the dynamic

properties of the real yield curve. For example, one of the implications of

the standard long-run risk model is that the real yield curve slopes down-

wards as pointed by Beeler and Campbell (2012) among others. However,

the data show that the yield curve slope has changed significantly over the

sample period. The average yield curve has a positive slope for the whole

sample period (1985 - 2011) as shown in Table 1. And if we plot the 5-year

moving average of the yield spread between the 15-year bond and the 5-year

bond (see Figure 6), we can see that the yield curve slope is positive ap-

proximately before 1998 and after 2005, and the slope is negative in between

1998 and 2005. With a flexible specification of the market price of risk, our

model is able to match the movements in the yield spread and generate a

positive slope for the yield curve.
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5 Conclusions

Latent-factor term structure models based on the no-arbitrage condition

have been the most popular framework for studying the joint dynamics of

interest rates of different maturities. These models have rich specifications

of time-varying risk premiums and are able to account for many salient

features of bond yields. Compared to other economically grounded asset

pricing models, the empirical success of these dynamic factor models mainly

is due to that they only impose the no-arbitrage condition on the cross-

section of bond yields while relaxing other general equilibrium restrictions.

The cost of the added econometric flexibilities, however, is that the factors or

state variables in these models usually lack clear economic interpretations.

They only summarize the statistical properties of the yield curve.

We attempt to bridge this gap by estimating a consumption-based, no-

arbitrage model of the term structure of real interest rates. The empiri-

cal exercise conducted in this paper is based on equilibrium long-run risk

models. On one hand, we retain the same econometric flexibilities of the

latent-factor models and are able to obtain a tractable solution of the term

structure of real interest rates with time-varying risk premiums and stochas-

tic volatilities. On the other hand, the state variables in our model are linked

directly to the expected consumption growth as well as time-varying levels

of the growth volatility.

The model allows us to examines empirically the role of consumption risk

in determining long-term real interest rates. We extract a small but per-

sistent long-run component in consumption growth as well as time-varying

levels of growth volatility from consumption growth rate and long-term,

index-linked bond yields. Consistent with the calibration results of equilib-

rium long-run risk models, we find that both risks are priced in the bond

market. The long-run consumption risk, in fact, dominates the volatility

risk and drives most of the variations in the risk premiums of long-term real

bonds. The risk premium for consumption volatility is negative, suggesting

that long-term real bonds provide an effective hedge against the volatility
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risk in consumption growth. In contrast to the standard long-run risk model,

however, we find that the stochastic growth volatility alone is not sufficient

to account for the time variations in bond risk premiums. Movements of the

risk premiums seem to be primarily driven by time-varying market prices of

risk.

In this paper, the more general econometric specifications relative to the

standard long-run risk model, however, come at the expense of the tight

connection between the market prices of risk and the deep structural pa-

rameters that characterize investor’s preferences. A nature extension of the

current paper is to derive time-varying market prices of risk from a general

equilibrium model by introducing exogenous preference shocks as in Schorfl-

heide et al. (2013). Such a structural model may help us further understand

the economic forces underlying the dynamic behavior of the real yield curve

and its relation to various consumption risks. Our empirical exercises is an

intermediate step toward achieving this goal. Another extension is to in-

clude other long-lived assets such as stocks and nominal bonds in the study

along the line of Lettau and Wachter (2011) and Lustig et al. (2013) among

other. The expanded asset space can better capture all important sources

of aggregate risk that affect investor’s stochastic discount factor. These

extensions are left for future research.
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A The equilibrium real yield curve under recur-

sive utility function

Consider an economy with complete markets and a representative agent who

maximizes a Epstein and Zin (1989) type recursive preferences,

Ut =

[

(1− β)C
1−γ
θ t + β

(

EtV
1−γ
t+1

)
1
θ

]

θ
1−γ

(30)

subject to her inter-temporal budget constraint,

Wt+1 = Rc,t+1(Wt − Ct) (31)

where Ct is consumption at time t, Wt is the wealth of the agent at time

t, Rc,t+1 is the gross return on the wealth portfolio. In the utility function,

0 < β < 1, γ is the coefficient of risk aversion, θ = 1−γ
1−1/ψ and ψ is the

elasticity of intertemporal substitution.

Consumption is assumed to has the following dynamics,

∆ct+1 = µ0 + µt +
√
zt εt+1 (32)

µt+1 = φµt +
√

σµ,0 + σµ,1zt νt+1 (33)

zt+1 = z̄ + ρ(zt − z̄) + σz ωt+1 (34)

where ∆ct+1 is the log consumption growth rate and µt is a small but persis-

tent component of expected consumption growth. All shocks are i.i.d normal

and are orthogonal to each other. As in the long-run risk model of Bansal

and Yaron (2004), both ∆ct+1 and µt+1 have stochastic volatilities that are

driven by a common Gaussian state variable zt.

The Euler equation for this economy is given by:

Et
[

emt+1+rj,t+1
]

= 1 (35)

where rj,t+1 is the log of the gross return on asset j, and mt+1 is the log of
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the intertemporal marginal rate of substitution (or the stochastic discount

factor) given by:

mt+1 = θ log β − θ

ψ
∆ct+1 − (1− θ)rc,t+1 (36)

The the log return on the consumption claim, rc,t+1 = lnRc,t+1, can be

approximated by, as in Campbell and Shiller (1988),

rc,t+1 = k0 + k1xt+1 − xt +∆ct+1 (37)

where xt is the log price/consumption ratio, k0 and k1 are log linearization

constants.

Applying the Euler equation to the consumption claim, we can solve for

the price/consumption ratio as

xt = A0 +A1µt +A2zt (38)

where Ai, i = 0, 1, 2, are functions of the model parameters.

Having solved xt, the intertemporal marginal rate of substitution now

becomes:

mt+1 =θ log β − (1− θ)(k0 − (1− k1)A0) + (1− θ)A1µt + (1− θ)A2zt

− γ∆ct+1 − (1− θ)k1A1µt+1 − (1− θ)k1A2zt+1

(39)

We can easily see that,

mt+1 − Etmt+1 =− γ(∆ct+1 − Et∆ct+1)− (1− θ)k1A1(µt+1 − Etµt+1)

− (1− θ)k1A2(zt+1 − Etzt+1)

(40)

Therefore, with the recursive utility function, the market prices of short-run

consumption risk, long-run consumption risk and volatility risk are given
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by, respectively,

λc = γ (41)

λµ = (1− θ)k1A1 (42)

λz = (1− θ)k1A2 (43)

All market prices of risk are constant. Risk premiums are time-varying

because the volatilities of (expected) consumption growth, ∆ct+1 and µt+1,

are changing over time and are driven zt.

To solve for the term structure of real interest rates, we first note that

the one-period real interest rate can be obtained from the Euler equation:

e−r1,t = E (emt+1) (44)

and

r1,t = α0 + α1µt + α2zt (45)

for some constants αi, i = 0, 1, 2.

The interest rate on an n-period bond can be obtained recursively,

e−nrn,t = Et

(

emt+1−(n−1)rn−1,t+1

)

(46)

or

e−nrn,t = e−r1,tE
Q
t

(

e−(n−1)rn−1,t+1

)

(47)

where EQt refers to the conditional expectation taken with respect to the

risk-neutral probability measure determined bymt+1. It can be easily shown

that

rn,t = αn,0 + αn,1µt + αn,2zt (48)

for some constants αn,0, αn,1 and αn,2 that satisfy a system of difference

equations in n.
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Table 1 Summary Statistics: consumption and real yield curve

∆ct R5,t R7,t R10,t R12,t R15,t

Mean 1.8717 3.0845 3.1879 3.2882 3.3320 3.3761

Std. Dev. 3.2092 0.6560 0.6156 0.5927 0.5916 0.6010

Auto Corr 0.1589 0.7799 0.8096 0.8458 0.8692 0.8985

∆ct is annualized quarterly growth rate of real per-capita consumption on non-durable

goods and services. Ri,t (i = 5, 7, 10, 12, 15) is i-year real interest rate extracted from

prices of inflation-indexed government bonds. Interest rates and consumption growth

rates are all in percentage points. The sample period is Q1.1985 - Q4.2011.

Table 2 Cross Correlations: consumption and real interest rates

∆ct−8 ∆t−4 ∆ct−1 ∆ct ∆ct+1 ∆ct+4 ∆ct+8

R5,t 0.1640 0.2285 0.1380 0.1992 0.2186 0.2734 0.3405

R10,t 0.0974 0.1721 0.0961 0.1727 0.1716 0.2023 0.2464

R15,t 0.0425 0.0861 0.0311 0.0917 0.1009 0.1097 0.1452

∆ct is annualized quarterly growth rate of real per-capita consumption on non-durable

goods and services. Ri,t (i = 5, 10, 15) is i-year real interest rate extracted from prices of

inflation-indexed government bonds. The sample period is Q1.1985 - Q4.2011.
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Table 3 Forecasting Consumption Growth

R5,t ∆ct ∆ct−1 R2

∆ct+1 0.9543∗ 0.1202 0.0617

(0.3800) (0.1126)

∆ct→t+4 0.9062∗ 0.1269 0.1125∗ 0.2008

(0.3132) (0.0690) (0.0561)

∆ct→t+8 1.0962∗ 0.1015∗ 0.1248∗ 0.3688

(0.2362) (0.0417) (0.0341)

This table reports the OLS regression of consumption growth on lagged interest rates.

∆ct is annualized quarterly growth rate of real per-capita consumption on non-durable

goods and services. ∆ct→t+i is the average consumption growth rate between quarter t and

quarter t+ i, R5,t is the 5-year real interest rates extracted from prices of inflation-indexed

government bonds. Numbers in parentheses are heteroskedasticity and autocorrelation

consistent standard errors. Regression coefficients with ∗ indicate statistically significant

at 5% level. The sample period is Q1.1985 - Q1.2011.
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Table 4 Parameter Estimates

δ 1.4946 (0.0464)

ρ 0.9588 (0.0041)

ψ 0.00046 (0.00004)

µ0 0.0165 (0.0015)

φ 0.9955 (0.0005)

σµ 0.0024 (0.0003)

A1 0.0049 (0.0005)

B1 0.3544 (0.1197)

λz 4.7501 (0.4936)

φ∗0 0.0002 (0.0016)

φ∗1 1.0016 (0.0196)

σ15 0.0128 (0.0038)

Likelihood Function 1232.53

This table reports the maximum likelihood estimates of the parameters of the term struc-

ture models in Section 3. Standard errors are included in the parentheses.
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Table 5 Yield Curve Factors

Y5,t Y15,t − Y5,t R2

µ̂t 2.8106∗ 4.6885∗ 0.95

(0.1080) (0.3430)

ẑt -0.0279 −2.6116∗ 0.95

(0.0595) (0.1903)

This table reports the OLS regression of the expected consumption growth, µ̂t, and the

growth volatility, ẑt, on the 5-year rate, Y5,t, and the spread between the 15-year rate and

the 5-year rate, Y15,t − Y5,t. Heteroskedasticity and autocorrelation consistent standard

errors are included in the parentheses. µ̂t and ẑt are based on maximum likelihood esti-

mates of the term structure models. Regression coefficients with ∗ indicate statistically

significant at 5% level.
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Table 6 Time-varying Bond Risk Premiums

Total Risk Long-run Risk Volatility Risk

Mean 0.9248 1.2749 -0.3501

Standard Deviation 0.2670 0.1966 0.0916

Variance Ratio 1 0.7123 0.2877

Total Risk is the annualized expected excess holding-period return for a 10-year real bond

defined in (25). Long-run Risk represents the part of risk premium due to time-varying

expected consumption growth. Volatility Risk represents the part of the risk premium

due to time-varying consumption growth volatility. Total risk premium is the sum of the

long-run consumption risk premium and the volatility risk premium. Variance Ratio is

the the ratio of co-variance between total risk premium and the long-run consumption risk

premium (or the volatility risk premium) over the variance of total risk premium.
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Figure 1: The Estimated Long-end of the Real Yield Curve
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Upper panel of the figure plots the average of yield curve. The lower panel of the figure

plots the standard deviations of real rates. The maturities are in years. The solid lines

are from the model in Section 3. Circles represent data. The sample period is from 1985

to 2011.
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Figure 2: The Estimated Long-end of the Real Yield Curve: constant volatil-
ity
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Upper panel of the figure plots the average of yield curve. The lower panel of the figure

plots the standard deviations of real rates. The maturities are in years. The solid lines are

from the same model as in Section 3 except that volatility is constant. Circles represent

data. The sample period is from 1985 to 2011.
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Figure 3: Time-varying Consumption Growth Volatility
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The figure plots the estimated state variable zt for the period Q1.1985 - Q4.2011. zt drives

the stochastic volatility of consumption growth.
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Figure 4: Expected Consumption Growth
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The figure plots (de-meaned) consumption growth rate (the dotted line, denoted as gc)

together with the expected consumption growth (the solid line, denoted as mu) estimated

from the model. The sample period is Q1.1985 - Q4.2011.
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Figure 5: Time-varying Risk Premiums
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The figure plots the risk premiums of a 10-year real bond (the expected excess holding-

period-return). RISK10 is the total risk premium, RISKMU represents to the part of the

risk premium due to time-varying expected consumption growth or long-run consumption

risk, RISKZ represents to the part of the risk premium due to time-varying consumption

growth volatility.
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Figure 6: Real Yield Curve Slope
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The figure plots the 20-quarter moving average of the yield spread between the 15-year

real bond and the 5-year real bond.
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